• CNR-ISMAR
  •  
  •  
  •  

MAELSTROM: UNO: Underwater Non-natural Object dataset

UNO is a underwater images dataset allowing deep-learning networks to localize non-natural objects within underwater images. The dataset consists in 279 videos, 5930 frames, and 10809 labels.

UNO is a more consistent and balanced version of the TrashCan image dataset to evaluate models for detecting non-natural objects in the underwater environment. We propose a method to balance the number of annotations and images for cross-evaluation. We then compare the performance of a SOTA object detection model when using TrashCAN and UNO datasets. Additionally, we assess covariate shift by testing the model on an image dataset for real-world application. Experimental results show significantly better and more consistent performance using the UNO dataset.

Base

Data (Pubblicazione)
2023-10-25
Identificatore
http://libeccio.bo.ismar.cnr.it:8080/geonetwork/srv/eng/catalog.search#/metadata/affce6de-3318-46cd-998a-d9e20452edcc
Formato di presentazione
Immagine digitale
Finalità
Detecting non-natural objects in the underwater environment
Crediti
© MAELSTROM - Smart technology for MArinE Litter SusTainable RemOval and Management funded by the European Union, Programme H2020-EU.3.2.5.1. Grant agreement No 101000832. https://doi.org/10.3030/101000832.
Status
Completato
Fornitore della risorsa
  ICAR, LIRMM, Univ Montpellier, CNRS - Cyril Barrelet ( Researcher )
Montpellier , France
Frequenza di aggiornamento
Secondo necessità
Tema
Parole chiave
  • maelstrom
  • Underwater Non-natural Object dataset (UNO)
  • deep learning
  • underwater imagery
  • underwater trash
GEMET - INSPIRE themes, version 1.0
  • Human health and safety
Limitazione d’uso

MAELSTROM data policy: https://zenodo.org/records/15030538

MAELSTROM data access request form: https://zenodo.org/records/15030591

Vincoli di accesso
Licenza
Altri vincoli
Creative Commons Attribution 4.0 International

Vincoli sulla risorsa

No information provided.
Vincoli di fruibilità
Licenza
Altri vincoli
Creative Commons Attribution 4.0 International
Classificazione
Non riservato
Lingua dei metadati
English
Tema
  • Salute
Informazioni supplementari
none
Formato di distribuzione
  • videos, frames, annotations ( )

Distributore
  National Research Council - Institute of Marine Science (CNR-ISMAR) - Director ( Director )
Risorsa online
UNO database ( WWW:LINK-1.0-http--link )

Annotations and images

Risorsa online
UNO code ( WWW:LINK-1.0-http--link )

A script that splits a video dataset into k well-balanced folds for object detector nested cross-validation purposes

Risorsa online
D3.3 Preliminary report on the Cable robot autonomous control using Machine learning for litter identificatio ( DOI )

Project deliverable

Livello
Dataset non geografici
Altro
Image

Conformità

Data (Revisione)
2020-10-09
Spiegazione
Validated in Geonetwork according to the ISO19115 rules (24/24)
Pass
Yes
Genealogia del dato – Processo di produzione

C. Barrelet, M. Chaumont, G. Subsol, V. Creuze, M. Gouttefarde. From TrashCan to UNO: Deriving an Underwater Image Dataset To Get a More Consistent and Balanced Version.

https://www.lirmm.fr/~chaumont/publications/CVAUI2022_ICPR2022_Barrelet_Chaumont_Subsol_Creuze_Gouttefarde_From_TrashCan_to_UNO.pdf

Dati di origine
Identificatore del file di metadati
affce6de-3318-46cd-998a-d9e20452edcc XML
Lingua dei metadati
English
Set dei caratteri dei metadati
UTF8
Livello gerarchico
Dataset non geografici
Nome del livello gerarchico
Image
Data dei metadati
2025-03-15T09:23:53
Nome dello Standard dei metadati
ISO 19115:2003/19139
Versione dello Standard dei metadati
1.0
Punto di contatto
  National Research Council - Institute of Marine Science (CNR-ISMAR) - Valentina Grande ( Catalog manager )
https://orcid.org/0000-0002-3489-268X
 
 

Overviews

Estensione spaziale

Parole chiave

GEMET - INSPIRE themes, version 1.0
Human health and safety

Provided by

Share on social sites

Not available


  •  
  •  
  •